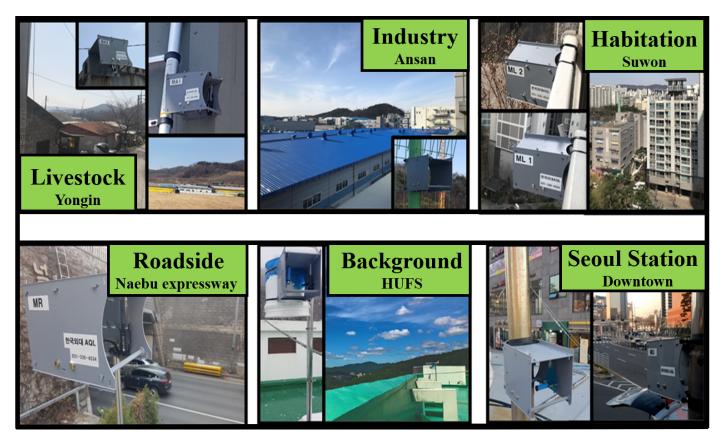

Supplementary Materials

Seasonal and Spatial Variations of Atmospheric Ammonia in the Urban and Suburban Environments of Seoul, Korea

Rahul Singh ¹, Kyunghoon Kim ¹, Gyutae Park ², Seokwon Kang ¹, Taehyun Park ¹, Jihee Ban ¹, Siyoung Choi ¹, Jeongin Song ¹, Dong-Gil Yu ¹, Jung-Hun Woo ³, Yuri Choi ⁴ and Taehyoung Lee ^{1,*}


- Department of Environmental Science, Hankuk University of Foreign Studies, Yongin 17035, Korea; korsrahul@hufs.ac.kr (R.S.); khkim159@hufs.ac.kr (K.K.); gang0701@hufs.ac.kr (S.K.); tpark@hufs.ac.kr (T.P.); jhban@hufs.ac.kr (J.B.); siyoung@hufs.ac.kr (S.C.); sji980115@hufs.ac.kr (J.S.); envigreen@keiti.re.kr (D.-G.Y.)
- ² Air Pollution Engineering Division, Climate and Air Quality Research Department, National Institute of Environmental Research, Incheon 22689, Korea; gt0303@korea.kr
- Department of Civil and Environmental Engineering, Konkuk University, Seoul 05029, Korea; iwoo@konkuk.ac.kr
- Public Health and Environment, Seoul Research Institute of Public Health and Environment, Seoul 04524, Korea; cyuri@seoul.go.kr
- * Correspondence: thlee@hufs.ac.kr; Tel.: +82-31-330-4039

Sources of Ammonia

Figure S1. Schematic Diagram of Ammonia passive sampler-based ammonia collection process for its concentration measurement.

Atmosphere **2021**, 12, 1607 2 of 7

Figure S2. Real-time installation of the NH₃ passive sampler with Temperature (°C) and RH (%) sensor inverted in Rain shelter at the studied sites.

Figure S3. Portable sensor (EasyLog USB) for measuring the temperature (°C) and relative humidity (%).

Atmosphere **2021**, 12, 1607 3 of 7

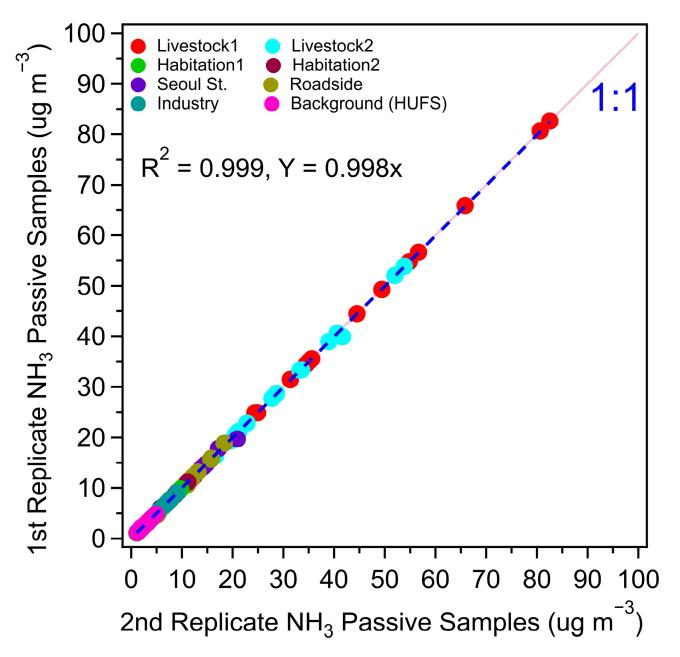



Figure S4. Schematic Diagram of Annular denuder setup in the laboratory at HUFS.

Atmosphere **2021**, 12, 1607 4 of 7

Figure S5. Comparison of ammonia concentrations measured by replicates passive samples. The error bars represent the relative standard deviation of 3.8 % calculated from all 212 pooled replicate samples.

Table S1. Quality Assurance & Quality Control (QC/QA) Using Ion Chromatography During Sample Analysis.

QC/QA Measurement Parameters	Measured Values
Relative Error (%)	0.10
Absolute Error (ppb)	0.20
Analytical Precision, CV (%)	0.95
Measurement Precision, RSD (%)	3.80
Minimum Detection Limit, MDL (ppb)	0.07

Dionex calibration check measurements were used to evaluate the accuracy in terms of Absolute Error and Relative Error using Equation. S1 and S2 respectively [1].

$$E = X_i - X_t$$
 s1

Atmosphere **2021**, 12, 1607 5 of 7

$$E_{\rm r}(\%) = \frac{X_{\rm i} - X_{\rm t}}{X_{\rm t}} \times 100\%$$
 S2

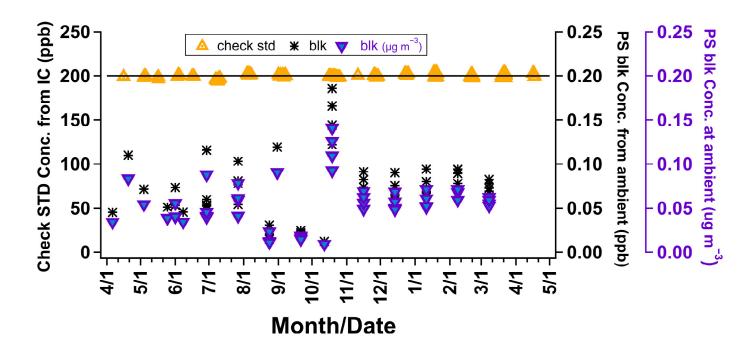
Where X_i is the measurement of the quantity and X_t is the true value and it was found that the system shown a relative error of 0.10% and an absolute error of 0.20 ppb. Analytical precision was evaluated using the data obtained by periodic analyses of the calibration standards and was calculated using Equation. S3 [56] and was found to be 0.95%.

$$CV(\%) = \frac{Std. Dev.}{\overline{x}} \times 100\%$$

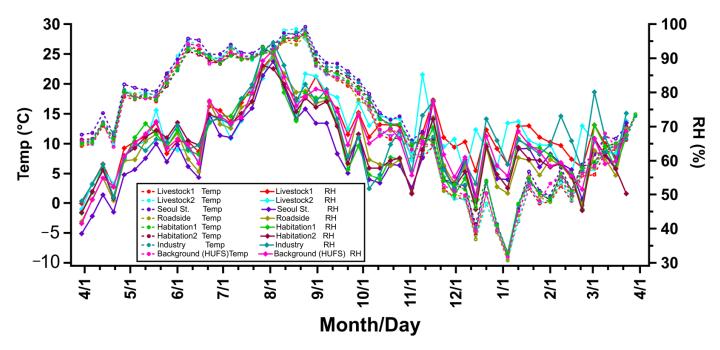
where \bar{x} is the average of all the replicate samples while measurement precision was found to be 3.8% and was evaluated using Equation. S4 and S5 (Skoog et al. 2016).

$$RSD(\%) = \frac{S_{pooled}}{\overline{x}} \times 100\%$$

Where
$$S_{pooled} = \frac{\sum_{i=1}^{N_1} (x_i - \overline{x}_1)^2 + \sum_{j=1}^{N_2} (x_j - \overline{x}_2)^2 + \cdots}{N_1 + N_2 + \cdots + N_s}$$


, N_I represents the number of replicated data samples in set 'I' and 1, 2, ... S represent the S^{th} set.

Field and laboratory blanks were collected throughout the sampling period of 1 year to determine the Method Detection Limit (MDL) using the Equation. S6 [56].


$$MDL \ge t \times S_b \times \sqrt{\frac{N_1 + N_2}{N_1 \times N_2}}$$
 s5

where MDL was calculated to be 0.07 ppb for a 1-week Radiello passive NH₃ sampler. In the Equation S5, t represents a value of 95% confidence level, S_b is the blank standard deviation, (N1 = 1) and (N2 = 47) are the number of sample measurements and the number of analyzed blanks, respectively.

Atmosphere **2021**, 12, 1607 6 of 7

Figure S6. Sample Analysis for Accuracy, Precision and Minimum Detection Limit (MDL) ConcenTable S7. Regional Distribution of Temperature (°C) and relative humidity (%) information over the period of 1 year on weekly average basis.

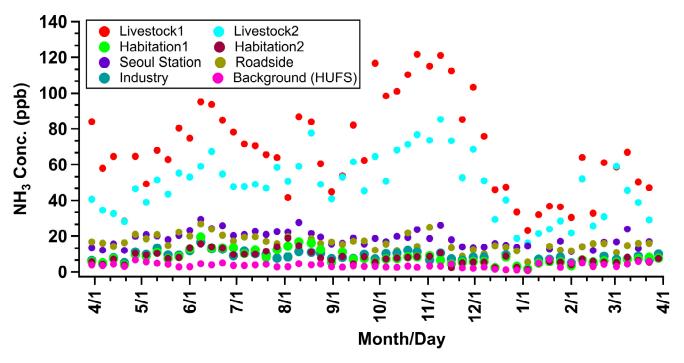

Figure S7. Regional Distribution of Temperature (°C) and relative humidity (%) information over the period of 1 year on weekly average basis.

Table S2. Average Concentration and Standard Deviation of ammonia (ppb) at studied sites.

Season Sites	Spring	Summer	Autumn	Winter
Livestock 1	60.2 ± 14.5	74.7 ± 14.8	94.2 ± 26.4	47.9 ± 22.6
Livestock 2	40.0 ± 9.2	55.9 ± 8.8	62.6 ± 13.7	34.6 ± 16.5
Seoul Station	17.2 ± 3.7	23.2 ± 2.9	18.6 ± 3.3	13.7 ± 2.4
Roadside	16.8 ± 3.1	19.1 ± 3.5	15.0 ± 4.4	12.2 ± 3.2

Atmosphere **2021**, 12, 1607 7 of 7

Habitation 1	7.2 ± 2.1	12.6 ± 3.0	7.9 ± 2.2	5.0 ± 2.0
Habitation 2	7.4 ± 1.9	13.5 ± 2.9	7.2 ± 1.8	5.1 ± 2.0
Industry	8.4 ± 2.4	11.1 ± 2.3	8.9 ± 1.9	6.2 ± 2.6
Background (HUFS)	4.6 ± 1.2	3.9 ± 0.7	3.2 ± 0.4	3.7 ± 2.4

Figure S8. Passive NH₃ concentration time series for all eight sites in the Northeastern region of Scheme 2020. All samples were measured every Monday for sampling on a weekly basis.

References

56. Skoog, D.A.; Holler, F.J.; Nieman Crouch, S.R. Appendix I: Evaluation of Analytical Data. In *Principles of Instrumental Analysis*, 7th ed.; CENGAGE, Seoul, South Korea, 2016.