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ABSTRACT 

 

As part of the Megacity Air Pollution Studies (MAPS)-Seoul campaign, three types of research flights were conducted 

over the Seoul Metropolitan Area (SMA) from May till June 2015 to measure the spatial distribution of a pollution plume 

near a power plant and petrochemical complex, the vertical profiles of pollutants on the western coast of Korea, and the 

pollutant distribution in the SMA. The pollution plume (~0–700 m) was highly concentrated and dominated by organic 

aerosol (OA), which very likely oxidized in the plume, as it showed slightly less oxidation near the source and significantly 

less oxidation at altitudes above the plume. One vertical profile displayed transitions in concentration and changes in the 

dominant components, suggesting that the particle sources and/or processing differed above ~1000 m; below 1000 m, where 

the total mass and OA concentrations were high, sulfate and likely transport sources predominated. The other profile, which 

was assessed during a separate flight, exhibited sharp increases in the OA number concentration and mean diameter, less 

oxidized organic content, and higher organic and nitrate concentrations above 1400 m, indicating high-altitude transport and 

a cleaner boundary layer. Finally, flights investigating the distributions of pollutants in the central, upwind, and downwind 

SMA regions generally detected high levels of oxidation downwind as well as different aerosol masses between the low and 

high altitudes. This study highlights the necessity of understanding the complex vertical structures of particle layers, such as 

those identified in and around the SMA, in order to facilitate the adoption of efficient air quality control strategies and 

enhance air quality forecasting. 
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INTRODUCTION 

 

Seoul is one of the largest metropolitan areas in the world, 

and half of the Korean population lives in the Seoul 

Metropolitan Area (SMA), which constitutes only 12% of 

the country’s area (Statistics Korea, 2016). The population 

of the SMA continues to increase due to urbanization. Air  
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pollution characterization in the SMA is complex due to the 

high population density and a wide variety of air pollution 

sources, including transportation, industry, and residential 

activities such as meat cooking. In addition, a large amount 

of energy consumption in various forms (e.g., fossil fuel 

combustion, biomass burning) contributes to the high levels 

of air pollution in megacities (Gurjar et al., 2016). 

Numerous studies have been conducted to understand the 

characteristics of domestic emissions and the influence of 

pollutants transported long-range from China (Lee et al., 

2012; Park et al., 2013; Boris et al., 2015; Lee et al., 2015; 

Bae et al., 2017; Lee et al., 2019). Choi et al. (2016) identified 

the sources of organic aerosol (OA) in PM10 (particulate 

matter with a diameter of < 10 µm) in Seoul, Korea, in 2010–

2011, indicating that most OA was emitted from anthropogenic 

sources such as combustion of fossil fuel and biomass 

burning. Oh et al. (2015) analyzed high-PM10 episodes (daily 

https://creativecommons.org/licenses/by/4.0/
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mean PM10 > 100 µg m–3) in Seoul, finding that such events 

were often caused by long-range pollutant transport from 

China with prevailing westerly winds. Although sources and 

select seasons have been investigated in Seoul itself, 

regional-scale air quality and chemistry, which affect both 

the metropolitan area and broad areas downwind through 

atmospheric diffusion and transport, remain unexplored 

(Cassiani et al., 2013).  

In addition, ground-based measurements, especially those 

at fixed locations, are limited in their ability to elucidate air 

pollution behavior throughout the vertical and spatial 

distributions of the plume. As a result, numerous studies 

using aircraft measurements have endeavored to understand 

air pollution behavior and characteristics, varied aerosol 

features and types including aerosol spatial distributions, 

biomass burning smoke, emissions from volcanic eruptions, 

and dust storms (Hunton et al., 2005; DeCarlo et al., 2008; 

Wang et al., 2008; Belchschmidt et al., 2012; Zamora et al., 

2016). DeCarlo et al. (2008) conducted the first aircraft study 

on the regional evolution of aerosol chemistry in a tropical 

megacity, using a High-Resolution Time-of-Flight Aerosol 

Mass Spectrometer (HR-ToF-AMS) to measure the spatial 

non-refractory (NR)-PM1 (particles with an aerodynamic 

diameter of < 1 µm) species (OA, sulfate, nitrate, and chloride) 

and other air pollutant species on board the NSF/NCAR C-130 

aircraft, as part of the Megacity Initiative: Local and Global 

Research Observations (MILAGRO) field campaign. Hecobian 

et al. (2011) investigated chemical characteristics of 495 

biomass burning plumes inboard the NASA DC-8. The Aerosol 

Characterization Experiment-Asia (ACE-Asia) included AMS 

measurements (at a lower mass resolution, using an earlier 

version of the instrument) over Japan and the Western Pacific 

(Bahreini et al., 2003); however, the measurements were too 

limited in duration and spatial coverage to provide a broad 

overview of the vertical and horizontal chemical trends in the 

area, and were in any case somewhat removed from the SMA. 

A deeper understanding of the physicochemical processes in 

the SMA will facilitate the adoption of more efficient air 

quality control strategies and enhance air quality forecasting. 

In this study, we characterized aerosol number distributions 

as a function of size and mass concentrations of sulfate, 

nitrate, ammonium, and organics in polluted air plumes, and 

investigated the horizontal and vertical distributions of each 

species in the atmosphere using an ultra-high-sensitivity 

aerosol spectrometer (UHSAS) and HR-ToF-AMS on board 

the Hanseo King Air C90GT aircraft, as a part of the Megacity 

Air Pollution Studies-Seoul (MAPS-Seoul) campaign. 

These aircraft-based NR-PM1 observations were the first of 

their kind in Korea, and this research flight constitutes a 

preliminary study in preparation for the Korea-United States 

Air Quality (KORUS-AQ) campaign (Kim et al., 2018). The 

organic-matter-to-organic-carbon ratio (OM:OC), oxygen-to-

carbon ratio (O:C), and hydrogen-to-carbon ratio (H:C) from 

the HR-ToF-AMS, the vertical and horizontal distributions 

for which have also not been previously characterized over 

Korea, are used to explain and characterize the oxidation 

state of OA (Aiken et al., 2008, Canagaratna et al., 2015). 

 

METHODS 

 

Measurement Site 

Seven research flights (RFs) were conducted over the 

SMA from May to June 2015, based on a Hanseo King Air 

C90GT aircraft (Textron Aviation Inc.) (Fig. S1) during the 

MAPS-Seoul campaign (Fig. 1). These research flights used 

an HR-ToF-AMS (Aerodyne Inc., USA) and a UHSAS 

(Droplet Measurement Technologies Inc., USA) to record 

measurements. Table 1 presents brief descriptions of these 

flights. They can be categorized into three sets of research 

flights exploring a specific focus: (1) the spatial distribution 

of the pollution plume (RF02), (2) vertical spiral flights on 

the coasts of Taean and Anmyeon, in the western part of 

Korea (RF03 and RF06), and (3) areas around the SMA 

(RF01, RF04, RF05, and RF07). The details concerning 

flight information and weather conditions are described in 

Kim et al. (2018). 

 

Instrumentation 

The operation of the HR-ToF-AMS has been described in 

detail elsewhere (Jayne et al., 2000; Jimenez et al., 2003; 

 

 

Fig. 1. Maps of East Asia. The red square outlines the South Korean peninsula. The right-hand panel depicts the flight tracks 

of the research flights (RFs) aboard the King Air aircraft. 
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Table 1. Brief descriptions of the research flights during the MAPS-Seoul campaign. 

Research 

flight # 
Date Time 

Altitude (m) 
Flight path 

Mean Max 

RF 01 May 27 12:30–15:30 641 1133 Around Seoul Metropolitan Area 

RF 02 June 2 16:00–18:00 774 1590 The coast of west part of Korea 

RF 03 June 6 14:00–17:00 1101 1900 The coast of Taean, Korea (spiral flight) 

RF 04 June 7 09:30–12:30 796 2020 Taean-Seoul-Wonju-Taean 

RF 05 June 7 13:30–16:30 1226 1906 Taean-Gwangju-Busan-Gwangju-Taean 

RF 06 June 13 09:30–11:30 1143 2722 Anmyeon, west part of Korea (spiral flight) 

RF 07 June 13 13:30–17:00 988 2246 Taean-Gimpo-Seoul-Wonju-SMA-Taean 

 

Drewnick et al., 2005; DeCarlo et al., 2006; Canagaratna et 

al., 2007; Lee et al., 2015). In brief, ambient air was pulled 

through a URG cyclone at a flow rate of 3 L min–1 to remove 

particles with an aerodynamic diameter > 2.5 µm, before 

HR-ToF-AMS analysis. The ambient air entered the HR-

ToF-AMS through a 110 µm diameter critical orifice, passing 

into the interior vacuum; the average flow rate through the 

inlet was 0.105 L min–1. The AMS uses an aerodynamic lens 

to focus ~35 nm to ~1 µm ambient particles into a narrow 

particle beam, which then travels into the particle time-of-

flight (PToF) region. NR-PM1 particles are vaporized by a 

resistively heated surface at ~600°C and undergo electron 

ionization (70 eV). In this study, the HR-ToF-AMS was 

operated in the V mode at a 20 s time resolution during the 

determination of the NR-PM1 composition, which included 

concentrations of OA, nitrate, sulfate, ammonium, and 

chloride. The HR-ToF-AMS ionization efficiency (IE) was 

calibrated using 350 nm ammonium nitrate particles with a 

number density of ~300 cm–3. Default relative IE (RIE) values 

from the data analysis software were used for the other aerosol 

components (OA, sulfate, nitrate, ammonium, and chloride). 

Data were corrected for the composition-dependent collection 

efficiency (CDCE) in order to reduce uncertainty due to 

particle bounce on the surface of the vaporizer (Middlebrook 

et al., 2012). Concentrations measured in filter air blanks were 

used to determine minimum detection limits (MDLs) (Skoog 

et al., 1998). The MDLs (µg m–3) for the major chemical 

components (OA, nitrate, sulfate, ammonium, and chloride) 

were 0.18, 0.03, 0.02, 0.04, and 0.02, respectively. 

The HR-ToF-AMS data were analyzed using SeQUential 

Igor data RetRiEvaL (SQUIRREL, v1.57) and Peak Integration 

by Key Analysis (PIKA, v1.16) software (DeCarlo et al., 2006; 

Sueper and Collaborators, 2009) in Igor Pro (Wavemetrics 

Inc., v6.35). SQUIRREL and PIKA were used to determine 

the NR-PM1 unit mass and high-resolution mass spectra, 

respectively, based on the NR-PM1 chemical composition 

(OA, sulfate, nitrate, ammonium, and chloride) and ion 

fragment elemental composition (e.g., CxHy, CxHyO1, and 

CxHyOz). The operation of the UHSAS, an optical-scattering 

laser-based aerosol spectrometer that provides the number 

size distribution of particles between 0.06 µm and 1 µm with 

1 s time resolution, has been described in detail elsewhere 

(Cai et al., 2008; Yokelson et al., 2011). 

 

Back-trajectory Analysis 

Several back-trajectory analyses were conducted for this 

study using the National Oceanic and Atmospheric 

Administration (NOAA) Air Resources Laboratory (ARL) 

Hybrid Single-Particle Lagrangian Integrated Trajectory 

(HYSPLIT) model, which has been described in detail 

elsewhere (Draxler and Hess, 1997; Stein et al., 2015; Rolph 

et al., 2017). This was done in order to identify influxes of 

transported air pollutants during the research flight; 

HYSPLIT has been used in numerous and various previous 

studies to describe the long-range transport, diffusion, and 

deposition of atmospheric pollutants (Escudero et al., 2006; 

Lee et al., 2015; Stein et al., 2015; Lee et al., 2016). For the 

analysis of each case in this study, five HYSPLIT simulations 

with run times of –72 h (from the data measurement time) 

were performed at 2 h intervals. 

 

RESULTS AND DISCUSSION 

 

Overall Mean NR-PM1 Concentrations during the 

Campaign 

The overall mean NR-PM1 concentrations during the 

MAPS-Seoul campaign are shown in Table 2. The mean 

NR-PM1 concentrations vary from 13.0 µg m–3 (RF05) to 

44.7 µg m–3 (RF06) during the seven research flights, 

throughout which OA accounted for 35–75% of the total 

NR-PM1 concentrations. In this study, overall OM:OC, O:C, 

and H:C values are 1.84–2.07, 0.54–0.71, and 1.28–1.41, 

respectively. Each research flight is described and compared 

to similar studies and locations in the following sections. 

 

Flight Type 1: 3D Spatial Distribution of Aerosol 

Chemical Composition in a Plume 

Fig. 2 shows temporal and spatial variations in the OA, 

sulfate, nitrate, and ammonium concentrations during RF02 

near the west coast of Korea. RF02 was conducted near 

power plants and the Daesan Petrochemical Complex (DPC; 

36.7°N, 126.2°E), one of the largest emission sources in this 

region. In general, the NR-PM1 plume moves west toward 

the sea after ascending from the DPC due to prevailing 

southeasterly winds. Near the DPC, NR-PM1 concentrations 

were maximized at an altitude of ~600 m and decreased 

above 600 m. Farther to the NW in the plume, the mass 

concentrations of OA and nitrate increased with altitude up to 

700 m, and OA dominated the NR-PM1 mass. During the 

descent at the end of the flight, however, sulfate was 

dominant closer to ground level beginning at 18:15, and the 

mass concentration of nitrate decreased. 

Fig. 3 shows a Van Krevelen diagram of the RF02 data, 

which can be used to investigate the organic oxidation state 
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Table 2. The overall mean NR-PM1 concentrations and the elemental ratio of organics for each research flight during the 

MAPS-Seoul campaign. 

Research  

flight # 

Mean concentration (µg m–3) Mean ratio 

NR-PM1 OA NO3
– SO4

2– NH4
+ OM/OC H/C O/C 

RF 01 15.17 (6.72)a 8.13 (3.37) 2.47 (2.11) 2.85 (1.20) 1.73 (0.80) 1.86 (0.13) 1.41 (0.10) 0.54 (0.10) 

RF 02 10.54 (8.66) 4.95 (3.95) 1.28 (1.47) 3.46 (2.54) 1.47 (1.18) 2.07 (0.23 1.28 (0.10) 0.71 (0.17) 

RF 03 22.48 (13.75) 9.14 (5.55) 2.11 (2.33) 8.07 (4.08) 3.16 (1.82) 1.96 (0.09) 1.32 (0.07) 0.62 (0.06) 

RF 04 19.40 (5.60) 6.85 (4.60) 1.96 (1.32) 7.67 (2.53) 2.93 (0.79) 1.97 (0.19) 1.39 (0.12) 0.62 (0.14) 

RF 05 13.00 (6.66) 5.79 (3.93) 1.37 (1.27) 4.15 (1.23) 1.70 (0.70) 2.00 (0.16) 1.33 (0.13) 0.65 (0.13) 

RF 06 44.71 (29.92) 33.39 (27.40) 3.24 (2.48) 5.27 (2.63) 2.80 (1.10) 1.84 (0.05) 1.37 (0.04) 0.53 (0.04) 

RF 07 33.70 (18.35) 20.21 (16.93) 2.50 (1.61) 7.88 (3.430 3.14 (1.06) 1.90 (0.06) 1.35 (0.06) 0.57 (0.05) 
a The parenthesis indicates the standard deviation. 

 

 

 

Fig. 2. (a) Timelines of NR-PM1 component concentrations and O:C; (b) spatial distribution of total NR-PM1 (organics, 

nitrate, sulfate, and ammonium) during RF02 showing local topography in translucent red. 

 

through changes in the H:C and O:C ratios. Generally, H:C 

decreases and O:C increases as OA emitted from a source is 

oxidized during long-range transport or in situ atmospheric 

chemical reactions (Chen et al., 2015). This continuous 

oxidation potentially increases OA mass concentrations and 

increases hydrophilicity, which may impact PM mass and 

climate (e.g., through changes in cloud behavior). Canagaratna 

et al. (2015) developed the Improved-Ambient (I-A) method  
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Fig. 3. Van Krevelen diagram showing RF02 data and broad ambient organic oxidation state ranges for secondary organic 

aerosol (SOA) and primary organic aerosol (POA) (Canagaratna et al., 2015); marker sizes indicate distance of the sampled 

point from the DPC and color indicates altitude, where green shades are generally within the high-concentration plume seen 

in Fig. 2(a). 

 

to classify O:C, and H:C values measured in previous field 

campaigns as primary or secondary aerosol (Fig. 3). According 

to the I-A method classification system for these RF data, 

the majority of the OA measured in RF02, and especially 

that in the plume (at altitudes of ~0–800 m, denoted by the 

blue to green markers in Fig. 3), is low-volatility oxygenated 

OA (LV-OOA). The OA is clearly less oxidized above the 

plume, at > 700 m (yellow to red markers in Fig. 3), likely 

indicating an air mass transition possibly delineated by the 

top of the boundary layer above the plume. Note that these 

higher-altitude data are also generally farther from the DPC 

(larger markers in Fig. 3), although there is no statistical 

relationship between distance from the DPC and oxidation 

indicators (including for data filtered to include only “in-

plume” data based on concentration; analysis not shown). 

Within the plume itself, the only notable change in O:C 

occurs near the DPC during the final descent, where the O:C 

decreases slightly with decreasing altitude (Fig. 2(a)). Thus, 

the overall pattern appears to involve the rapid oxidation of 

emissions from the DPC to become a consistently oxidized 

plume overlain (at altitudes > ~700 m) by a less oxidized air 

mass. 

 

Flight Type 2: Vertical Profiles of Aerosol Chemical 

Composition and Physical Properties 

Both RF03 and RF06 investigated pollutant vertical 

profiles through spiral flights over the western coast of 

Korea. OA dominated the NR-PM1 in both RF03 and RF06; 

the maximum OA concentrations in RF03 and RF06 were 

23.5 µg m–3 and 98.8 µg m–3 at 870 m and 1720 m, 

respectively. Like the maximum PM1 concentrations, maximum 

number concentration diameters (of 137.8 nm and 157.4 nm) 

occurred at 870 m and 1720 m in RF03 and RF06, 

respectively (Fig. 4). The details of these two flights, the 

data for which indicate different dominant aerosol sources 

and processing, are discussed below. 

In RF03, the number concentration gradually decreased 

with an increase in the flight altitude, and a decrease in the 

NR-PM1 concentration; this likely results from flying out of 

the most concentrated pollutant layer. Note that OA 

concentrations are lower than sulfate concentrations above 

1000 m, but higher below 1000 m (and that the relative 

concentrations of nitrate and ammonium also transition at 

1000 m). It suggests that the sources and/or processing of 

the particle populations differ above and below 1000 m, 

which may approximate the planetary boundary layer height 

(PBLH), while the PBLH can vary widely (previous research 

has shown average summer values of ~1000–1400 m over 

Seoul (Lee et al., 2013). It is likely that the particles above 

1000 m altitude were derived from transport, which is 

generally associated with enhanced sulfate formation (see 

Fig. 4), and the particles below 1000 m altitude were derived 

from other sources. There were no significant changes in 

O:C, which fell in the LV-OOA range throughout the profile, 

with altitude.  

The RF06 vertical profiles were almost the inverse of the 

RF03 profiles, showing sharp increases in number 

concentration, mean particle size, and NR-PM1 species 

concentrations above 1250 m. Near the surface, the sulfate 

concentration was higher than those of other species, which 

did not change significantly below 1250 m. Above 1250 m, 

all NR-PM1 species except for sulfate, and especially nitrate 

and OA, began to increase. The nitrate and OA concentrations 

had similar profiles and were both maximized at 1750 m, 

suggesting that the nitrate sources and/or aging processes 

were similar to those of OA. O:C is lower (in the semi-volatile  
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Fig. 4. Vertical profiles of NR-PM1 mass concentrations and O:C for (a) RF03 and (b) RF06 and particle size distributions 

for (c) RF03 and (d) RF06. The spiral flights were performed at ~630–2000 m. 

 

oxygenated OA (SV-OOA) range) above 1400 m and 

increased with decreasing altitude below, moving well into 

the LV-OOA range near the surface. Thus, changes in size 

distribution, concentration, and degree of oxidation indicate 

that the particle population above ~1300–1400 m was more 

abundant, somewhat larger, less oxidized, and contained 

more organics and nitrate than that near the surface. The 

back-trajectory analysis was conducted for the spiral flight 

location (36.594°N, 126.294°E) to identify any influxes of 

transported particles during RF06 (Fig. 5). HYSPLIT was 

run for 03:00 UTC on June 13, 2015, with a –72 h run time 

and a starting height of 1800 m above sea level (ASL). The 

influx of external air pollutants carried by westerlies is 

confirmed at an altitude of 1800 m during the RF06; influxes 

of pollutants from foreign countries may negatively affect 

domestic air quality after mixing down to the surface, which 

has been evidenced in other studies. Kim et al. (2018) 

analyzed meteorological data and back trajectories during 

this campaign, suggesting that the RF06 had favorable 

conditions for a strong long-range transport (LRT) process 

over the whole Korean Peninsula. 

Flight Type 3: Aerosol Chemical Composition over the 

SMA and Surrounding Regions 

RF07 involved travel from Taean, through the SMA, to 

Wonju, back again to the SMA, and then to Taean (Fig. 6), 

covering the entire inflow and outflow region of the SMA 

and providing an ideal dataset for investigating SMA aerosol 

chemical properties. Outside the SMA, the mass concentrations 

of chemical species in NR-PM1 were fairly similar in most 

areas, at < 20 µg m–3 (Fig. 7). OA was dominant in NR-PM1 

in all regions, and sulfate was the second most abundant 

NR-PM1 species over all regions except Seoul, where nitrate 

was the predominant inorganic species. West of the SMA, 

O:C varies somewhat in the LV-OOA range but did not show 

clear trends. Over Seoul, where the aircraft rose sharply in 

altitude, OA increased in concentration and contributed 73% 

of the NR-PM1 on average; the highest OA concentration 

was 120 µg m–3 at 2000 m. O:C also increased during this 

flight segment, then increased again as the aircraft began to 

move downwind of Seoul (and decreased slightly, then held 

steady in altitude). This increase in oxidation downwind at 

constant altitude may reflect increasing photochemical  
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Fig. 5. Back-trajectory analysis for RF06. 

 

oxidation of SMA emissions; however, due to the altitude of 

this flight segment (~1900 m), and based on the profiles 

presented earlier, which often indicate disconnection between 

aerosol masses higher and lower in the atmosphere (likely 

separated by the boundary layer), we cannot state with 

certainty that this oxidation occurs in particles from the 

SMA. Indeed, during the return trip from downwind Wonju 

to Seoul at a constant altitude, the O:C increased slightly 

closer to Seoul, highlighting the differences in particle sources 

and/or processing with altitude. During RF07, the vast 

majority of the observed OA fell in the LV-OOA region 

(H:C: ~1.32–1.68; O:C: ~0.61–0.88; Fig. S2). 

CONCLUSIONS 

 

To investigate the horizontal and vertical spatial trends in 

aerosol physicochemical processing, seven RFs were 

conducted over the SMA from May till June 2015 during 

the MAPS-Seoul campaign. The NR-PM1 composition and 

concentrations were examined using an HR-ToF-AMS, 

whereas the aerosol number distributions were measured as 

a function of size using a UHSAS. RF02 explored the spatial 

distribution of an NR-PM1 pollution plume rising from the 

DPC, one of the largest emission sources in this region. In 

general, the prevailing southeasterly winds moved the plume 

westward, toward the sea. Near the DPC, the NR-PM1 

concentrations peaked at an altitude of ~600 m. Farther to 

the northwest, however, the mass concentrations of the OA 

and nitrate in the plume continued increasing with altitude 

until ~700 m. Overall, OA dominated the composition, and 

the OA above 700 m clearly showed less oxidation, indicating 

the likely presence of an air mass transition zone (possibly 

delineated by the top of the boundary layer) over the plume; 

however, no statistical relationship between distance from 

the DPC and indicators of oxidation (including data filtered 

by concentration to include only “in-plume” data; analysis 

not shown) was found. Within the plume, the only notable 

change in the O:C occurred near the DPC during the final 

descent, where the O:C slightly decreased as the altitude 

dropped. RF03 and RF06 involved vertical spiral flights 

over the Taean and Anmyeon coasts. RF03 recorded OA 

concentrations that were higher than those for sulfate below 

1000 m but lower than those above 1000 m; no significant 

change in the O:C, which fell in the LV-OOA range for the 

entire profile, was detected. The differences in concentration 

and composition, especially in the dominant components, 

suggest that the particle origins and/or aerosol processes 

change above ~1000 m, where the enhanced sulfate formation 

identifies transport as the primary source, in contrast to the 

lower altitudes. RF06, on the other hand, measured sharp 

increases in the number concentration and mean diameter of 

the NR-PM1, less oxidized organic matter, and higher OA 

 

 

Fig. 6. Flight path during RF07 color-coded by (a) time (Korea Standard Time) and (b) altitude (m). 
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Fig. 7. Timelines of NR-PM1 during RF07: (a) Taean to Gimpo airport, (b) aircraft inspection at Gimpo Airport, (c) passage 

through Seoul, (d) travel to Wonju, (e) journey from Wonju around the SMA, and (f) flight around the SMA back to Taean. 

 

and nitrate concentrations above 1400 m, indicating that the 

bulk of the particles were transported, which was confirmed 

by –72 h HYSPLIT back trajectories. Decreased levels of 

particulate matter were observed at lower altitudes, although 

the sulfate concentration rose toward the surface. Finally, 

flights investigating the distributions of pollutants in the 

central, upwind, and downwind SMA regions generally 

detected high levels of oxidation downwind; however, as 

demonstrated by profiles obtained by previous flights, the 

aerosol masses differed between the low and high altitudes 

(probably inside and above the boundary layer, respectively). 

Understandably, air quality is often viewed 

unidimensionally, from the ground, when focusing on its 

health effects. However, the complex vertical structure of 

particle sublayers, such as those identified in and around the 

Seoul Metropolitan Area, must be understood in order to 

better comprehend (and thus simulate) the climatic effects 

of aerosol, and the photochemical processing and sources of 

air pollutants in a variety of locations (e.g., urban, suburban, 

and remote sites). 
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